Characterization of Dysferlin Deficient SJL/J Mice to Assess Preclinical Drug Efficacy: Fasudil Exacerbates Muscle Disease Phenotype
نویسندگان
چکیده
The dysferlin deficient SJL/J mouse strain is commonly used to study dysferlin deficient myopathies. Therefore, we systematically evaluated behavior in relatively young (9-25 weeks) SJL/J mice and compared them to C57BL6 mice to determine which functional end points may be the most effective to use for preclinical studies in the SJL/J strain. SJL/J mice had reduced body weight, lower open field scores, higher creatine kinase levels, and less muscle force than did C57BL6 mice. Power calculations for expected effect sizes indicated that grip strength normalized to body weight and open field activity were the most sensitive indicators of functional status in SJL/J mice. Weight and open field scores of SJL/J mice deteriorated over the course of the study, indicating that progressive myopathy was ongoing even in relatively young (<6 months old) SJL/J mice. To further characterize SJL/J mice within the context of treatment, we assessed the effect of fasudil, a rho-kinase inhibitor, on disease phenotype. Fasudil was evaluated based on previous observations that Rho signaling may be overly activated as part of the inflammatory cascade in SJL/J mice. Fasudil treated SJL/J mice showed increased body weight, but decreased grip strength, horizontal activity, and soleus muscle force, compared to untreated SJL/J controls. Fasudil either improved or had no effect on these outcomes in C57BL6 mice. Fasudil also reduced the number of infiltrating macrophages/monocytes in SJL/J muscle tissue, but had no effect on muscle fiber degeneration/regeneration. These studies provide a basis for standardization of preclinical drug testing trials in the dysferlin deficient SJL/J mice, and identify measures of functional status that are potentially translatable to clinical trial outcomes. In addition, the data provide pharmacological evidence suggesting that activation of rho-kinase, at least in part, may represent a beneficial compensatory response in dysferlin deficient myopathies.
منابع مشابه
Contribution of Dysferlin Deficiency to Skeletal Muscle Pathology in Asymptomatic and Severe Dystroglycanopathy Models: Generation of a New Model for Fukuyama Congenital Muscular Dystrophy
Defects in dystroglycan glycosylation are associated with a group of muscular dystrophies, termed dystroglycanopathies, that include Fukuyama congenital muscular dystrophy (FCMD). It is widely believed that abnormal glycosylation of dystroglycan leads to disease-causing membrane fragility. We previously generated knock-in mice carrying a founder retrotransposal insertion in fukutin, the gene re...
متن کاملIncreased susceptibility to complement attack due to down-regulation of decay-accelerating factor/CD55 in dysferlin-deficient muscular dystrophy.
Dysferlin is expressed in skeletal and cardiac muscles. However, dysferlin deficiency results in skeletal muscle weakness, but spares the heart. We compared intraindividual mRNA expression profiles of cardiac and skeletal muscle in dysferlin-deficient SJL/J mice and found down-regulation of the complement inhibitor, decay-accelerating factor/CD55, in skeletal muscle only. This finding was confi...
متن کاملComparative Gene Expression Analysis in the Skeletal Muscles of Dysferlin-deficient SJL/J and A/J Mice
Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was conducted to determine whether or not there are interstrain or site-dependent differences in the gene expression profiles of skeletal muscles in SJL/J and A/J mice as dysferlinopathy models. Upon analysis by qRT-PCR, SJL/J mice showed a trend of increased gene expression level of uncoupling protein 2 in the rectus femoris a...
متن کاملHip region muscular dystrophy and emergence of motor deficits in dysferlin‐deficient Bla/J mice
The identification of a dysferlin-deficient animal model that accurately displays both the physiological and behavior aspects of human dysferlinopathy is critical for the evaluation of potential therapeutics. Disease progression in dysferlin-deficient mice is relatively mild, compared to the debilitating human disease which manifests in impairment of particular motor functions. Since there are ...
متن کاملGlucocorticoid-Treated Mice Are an Inappropriate Positive Control for Long-Term Preclinical Studies in the mdx Mouse
BACKGROUND Dmd(mdx) (mdx) mice are used as a genetic and biochemical model of dystrophin deficiency. The long-term consequences of glucocorticoid (GC) treatment on dystrophin-deficient skeletal and heart muscle are not yet known. Here we used systematic phenotyping to assess the long-term consequences of GC treatment in mdx mice. Our investigation addressed not only the effects of GC on the dis...
متن کامل